Cluster management software serves as the “brain” of your cluster—coordinating computing tasks, scheduling jobs, and managing resources across various node types. Here’s a breakdown of key platforms and what types of compute and remote devices each can handle:
1. SLURM (Open‑Source Workload Manager)
-
What it controls: Linux servers (bare-metal or VMs) with CPU, GPU, and generic accelerators
-
Features: Job scheduling, resource allocation (including GPUs), fair-share, preemption, accounting, network-topology awareness developer.nvidia.comen.wikipedia.org+1github.com+1
-
Scale: Used on ~60% of TOP500 supercomputers alibabacloud.com+3en.wikipedia.org+3developer.nvidia.com+3
-
Integration: Works standalone or with Kubernetes for containerized workloads
2. Kubernetes + NVIDIA GPU Operator
-
What it controls: Containerized workloads on Linux servers with GPUs
-
Features: Automates GPU drivers, runtimes, scheduling via Kubernetes
-
Compute types: CPU-only, GPU (NVIDIA via GPU Operator, Ray for workload management) developer.download.nvidia.com+7docs.ray.io+7dev.to+7developer.nvidia.com
-
When combined with SLURM: Enables hybrid orchestration—slurm jobs within Kubernetes en.wikipedia.org+15collabnix.com+15alibabacloud.com+15
3. NVIDIA Base Command / Bright Cluster Manager
-
What it controls: Heterogeneous clusters—DGX systems, GPU servers, x86/ARM CPUs, DPUs, Spectrum switches developer.nvidia.com+2nvidia.com+2docs.nvidia.com+2
-
Scale: From a few nodes to supercomputer‐scale installations
-
Features: GUI lifecycle management, provisioning, multi-resource orchestration including Kubernetes & SLURM nvidia.com+1en.wikipedia.org+1
4. DeepOps (by NVIDIA)
-
What it controls: Linux GPU clusters via containerized SLURM or Kubernetes stacks
-
Features: Deployment scripts, infrastructure-as-code, queuing, monitoring
-
Compute types: GPU-enabled CPU servers expressed via containers; heterogeneous nodes supported if using Bright github.com+10github.com+10nvidia.com+10
5. GPUStack (Open Source)
-
What it controls: Mixed hardware (NVIDIA, AMD, Apple, Intel, Qualcomm GPUs), and devices from servers to desktops and laptops dev.to
-
Use cases: LLM serving, API access, metering, dashboard for cluster usage
-
Compute types: Heterogeneous GPU hardware across various operating systems dev.to+2dev.to+2collabnix.com+2
6. Other Notable Platforms
-
xCAT: Enterprise Linux/AIX management for diskless clusters, remote power, BIOS, hardware alerting en.wikipedia.org
-
Apache Mesos: General cluster manager (Linux/Unix), supports containerized workloads, data-center resource sharing en.wikipedia.org
-
HTCondor: High‑throughput computing across both server clusters and idle desktops/laptops.cross-platform (Linux/Windows/Mac) en.wikipedia.org
-
Proxmox VE: Manages virtualization (KVM, LXC) clusters with VM/container orchestration, HA, Ceph storage en.wikipedia.org
Summary Table
Software | Orchestrates | Compute Nodes Supported |
---|---|---|
SLURM | Linux HPC clusters | CPU, NVIDIA GPU-equipped nodes |
Kubernetes + GPU Operator | Container/cloud-native workloads | CPU & NVIDIA GPUs via containers |
SLURM ⇄ Kubernetes Hybrid | Unified batch + containers | Linux containers, VMs with GPUs/CPUs |
NVIDIA Base/Bright Manager | AI/HPC clusters, hybrid environments | DGX, GPU servers, ARM/x86 CPUs, DPUs, switches |
DeepOps | Infra deployment via code | Containerized SLURM/K8s GPU clusters |
GPUStack | LLM serving on mixed GPUs | Servers, desktops, laptops (NVIDIA, Apple, AMD, Intel) |
xCAT | Enterprise bare-metal clusters | Linux/AIX servers, diskless nodes |
Apache Mesos | Data center resource sharing | Linux/Unix servers, Docker containers |
HTCondor | Batch on clusters & idle desktops | Linux, Windows, Mac desktops & servers |
Proxmox VE | Virtualization & container clusters | KVM VMs, LXC containers |
Choosing the Right Software
-
Pure HPC / batch jobs: Go with SLURM (± GPU Operator for containers)
-
Container-first / cloud-native: Use Kubernetes + GPU Operator, possibly with SLURM hybrid for batch workloads
-
Enterprise AI + mixed infra: NVIDIA Bright or Base Command Manager
-
LLM service on mixed devices: Try GPUStack
-
Bare‑metal cluster provisioning: Use xCAT or DeepOps for infra automation
-
Virtualization-heavy setups: Choose Proxmox VE for VM/LXC orchestration
-
Distributed/desktop spare cycles: Consider HTCondor or Mesos
Next Steps
Want help picking the best fit?
-
Choose your primary compute type (batch, container, VM, LLM service)
-
Determine if you need heterogeneous device support (GPUs, desktops, servers)
-
Decide on management scope (simple scheduling, infra provisioning, GUI, hybrid)
-
I can guide you through setup steps for SLURM, Kubernetes GPU Operator, Bright, or GPUStack