Cluster Management Software

Cluster management software serves as the “brain” of your cluster—coordinating computing tasks, scheduling jobs, and managing resources across various node types. Here’s a breakdown of key platforms and what types of compute and remote devices each can handle:


1. SLURM (Open‑Source Workload Manager)


2. Kubernetes + NVIDIA GPU Operator


3. NVIDIA Base Command / Bright Cluster Manager


4. DeepOps (by NVIDIA)

  • What it controls: Linux GPU clusters via containerized SLURM or Kubernetes stacks

  • Features: Deployment scripts, infrastructure-as-code, queuing, monitoring

  • Compute types: GPU-enabled CPU servers expressed via containers; heterogeneous nodes supported if using Bright github.com+10github.com+10nvidia.com+10


5. GPUStack (Open Source)

  • What it controls: Mixed hardware (NVIDIA, AMD, Apple, Intel, Qualcomm GPUs), and devices from servers to desktops and laptops dev.to

  • Use cases: LLM serving, API access, metering, dashboard for cluster usage

  • Compute types: Heterogeneous GPU hardware across various operating systems dev.to+2dev.to+2collabnix.com+2


6. Other Notable Platforms

  • xCAT: Enterprise Linux/AIX management for diskless clusters, remote power, BIOS, hardware alerting en.wikipedia.org

  • Apache Mesos: General cluster manager (Linux/Unix), supports containerized workloads, data-center resource sharing en.wikipedia.org

  • HTCondor: High‑throughput computing across both server clusters and idle desktops/laptops.cross-platform (Linux/Windows/Mac) en.wikipedia.org

  • Proxmox VE: Manages virtualization (KVM, LXC) clusters with VM/container orchestration, HA, Ceph storage en.wikipedia.org


Summary Table

Software Orchestrates Compute Nodes Supported
SLURM Linux HPC clusters CPU, NVIDIA GPU-equipped nodes
Kubernetes + GPU Operator Container/cloud-native workloads CPU & NVIDIA GPUs via containers
SLURM ⇄ Kubernetes Hybrid Unified batch + containers Linux containers, VMs with GPUs/CPUs
NVIDIA Base/Bright Manager AI/HPC clusters, hybrid environments DGX, GPU servers, ARM/x86 CPUs, DPUs, switches
DeepOps Infra deployment via code Containerized SLURM/K8s GPU clusters
GPUStack LLM serving on mixed GPUs Servers, desktops, laptops (NVIDIA, Apple, AMD, Intel)
xCAT Enterprise bare-metal clusters Linux/AIX servers, diskless nodes
Apache Mesos Data center resource sharing Linux/Unix servers, Docker containers
HTCondor Batch on clusters & idle desktops Linux, Windows, Mac desktops & servers
Proxmox VE Virtualization & container clusters KVM VMs, LXC containers

Choosing the Right Software

  • Pure HPC / batch jobs: Go with SLURM (± GPU Operator for containers)

  • Container-first / cloud-native: Use Kubernetes + GPU Operator, possibly with SLURM hybrid for batch workloads

  • Enterprise AI + mixed infra: NVIDIA Bright or Base Command Manager

  • LLM service on mixed devices: Try GPUStack

  • Bare‑metal cluster provisioning: Use xCAT or DeepOps for infra automation

  • Virtualization-heavy setups: Choose Proxmox VE for VM/LXC orchestration

  • Distributed/desktop spare cycles: Consider HTCondor or Mesos


Next Steps

Want help picking the best fit?

  • Choose your primary compute type (batch, container, VM, LLM service)

  • Determine if you need heterogeneous device support (GPUs, desktops, servers)

  • Decide on management scope (simple scheduling, infra provisioning, GUI, hybrid)

  • I can guide you through setup steps for SLURM, Kubernetes GPU Operator, Bright, or GPUStack